Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

A new feature extraction model, generalized perceptual linear prediction (gPLP), is developed to calculate a set of perceptually relevant features for digital signal analysis of animal vocalizations. The gPLP model is a generalized adaptation of the perceptual linear prediction model, popular in human speech processing, which incorporates perceptual information such as frequency warping and equal loudness normalization into the feature extraction process. Since such perceptual information is available for a number of animal species, this new approach integrates that information into a generalized model to extract perceptually relevant features for a particular species. To illustrate, qualitative and quantitative comparisons are made between the species-specific model, generalized perceptual linear prediction (gPLP), and the original PLP model using a set of vocalizations collected from captive African elephants (Loxodonta africana) and wild beluga whales (Delphinapterus leucas). The models that incorporate perceptional information outperform the original human-based models in both visualization and classification tasks.

Citation

Patrick J Clemins, Michael T Johnson. Generalized perceptual linear prediction features for animal vocalization analysis. The Journal of the Acoustical Society of America. 2006 Jul;120(1):527-34

Expand section icon Mesh Tags


PMID: 16875249

View Full Text