Correlation Engine 2.0
Clear Search sequence regions


Myostatin, a member of the transforming growth factor (TGF)-beta family, plays an important role in regulating skeletal muscle growth and differentiation. Here we examined the role of FoxO1 and SMAD transcription factors in regulating myostatin gene expression and myoblast differentiation in C(2)C(12) myotubes in vitro. Both myostatin and FoxO1 mRNA expression were greater in fast- vs. slow-twitch skeletal muscles in vivo. Moreover, expression of a constitutively active form of FoxO1 increased myostatin mRNA and increased activity of a myostatin promoter reporter construct in differentiated C(2)C(12) myotubes. Mutagenesis of highly conserved FoxO or SMAD binding sites significantly decreased myostatin promoter activity, and binding assays showed that both FoxO1 and SMADs bind to their respective sites in the myostatin promoter. Treatment with TGF-beta and/or overexpression of SMAD2, -3, or -4 also resulted in a significant increase in myostatin promoter activity. Treatment with TGF-beta along with overexpression of SMAD2 and FoxO1 resulted in the largest increase in myostatin promoter activity. Finally, TGF-beta treatment and SMAD2 overexpression greatly potentiated FoxO1-mediated suppression of myoblast differentiation. Together these data demonstrate that FoxO1 and SMAD transcription factors regulate the expression of myostatin and contribute to the control of muscle cell growth and differentiation.

Citation

David L Allen, Terry G Unterman. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. American journal of physiology. Cell physiology. 2007 Jan;292(1):C188-99

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16885393

View Full Text