Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Terrestrial isopods moult first the posterior and then the anterior half of the body. During the moulting cycle they retain a significant fraction of cuticular calcium partly by storing it in sternal CaCO(3) deposits. We analysed the calcium content in whole Ligia hawaiiensis and the calcium distribution between the posterior, the anterior ventral, and the anterior dorsal cuticle during four stages of the moulting cycle. The results indicate that: (1) overall, about 80% of the calcium is retained and 20% is lost with the exuviae, (2) in premoult 68% of the calcium in the posterior cuticle is resorbed (23% moved to the anterior ventral cuticle, 17% to the anterior dorsal cuticle, and the remaining 28% to internal tissues), (3) after the posterior moult 83% of the calcium in the anterior cuticle is shifted to the posterior cuticle and possibly to internal storage sites, (4) following the anterior moult up to 54% of the calcium in the posterior cuticle is resorbed and used to mineralise the new anterior cuticle. (45)Ca-uptake experiments suggest that up to 80% of calcium lost with the anterior exuviae may be regained after its ingestion. Whole body calcium of Ligia hawaiiensis is only 0.7 times that of the fully terrestrial isopods. These terrestrial species can retain only 48% of whole body calcium, suggesting that the amount of calcium that can be retained by shifting it between the anterior and posterior integument is limited. We propose that fully terrestrial Oniscidea rely to a larger degree on other calcium sources like internal stores and uptake from the ingested exuviae.

Citation

Andreas Ziegler, Monica Hagedorn, Gregory A Ahearn, Thomas H Carefoot. Calcium translocations during the moulting cycle of the semiterrestrial isopod Ligia hawaiiensis (Oniscidea, Crustacea). Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology. 2007 Jan;177(1):99-108

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16927108

View Full Text