Correlation Engine 2.0
Clear Search sequence regions


We have studied the effects of C-terminal group modifications (amide, methylamide, dimethylamide, aldehyde, and alcohol) on the conformation, adenylyl cyclase stimulation (AC), or binding of parathyroid hormone (hPTH) analogues, hPTH(1-28)NH(2) and hPTH(1-31)NH(2). hPTH(1-31)NH(2) has a C-terminal alpha-helix bounded by residues 17-29 [Chen, Z., et al. (2000) Biochemistry 39, 12766]. In both cases, relative to the natural analogue with a carboxyl C-terminus, the amide and methylamide had increased helix content whereas the dimethylamide forms had CD spectra more similar to the carboxyl one. Conformational effects were more pronounced with hPTH(1-28) than with hPTH(1-31), with increases in helix content of approximately 30% in contrast to 10%. Stabilization of the C-terminal helix of residues 1-28 seemed to correlate with an ability of the C-terminal function to H-bond appropriately. None of the analogues affected the AC stimulating activity significantly, but there was an up to 15-fold decrease in the level of apparent binding of the carboxyl hPTH(1-28) analogue compared to that of the methylamide and a 4-fold decrease in the level of binding of the aldehyde or dimethylamide. There was no significant change in binding activities for the 1-31 analogues. These observations are consistent with previous studies that imply the importance of a region of the hormone's C-terminal alpha-helix for tight binding to the receptor. They also show that modulation of helix stability does have an effect on the binding of the hormone, but only when the C-terminus is at the putative end of the helix. The similarity of AC stimulation even when binding changed 10-fold can be explained by assuming greater efficacy of the weaker binding PTH-receptor complexes in stimulating AC.

Citation

Zhanna Potetinova, Jean-René Barbier, Tanya Suen, Thomas Dean, Thomas J Gardella, Gordon E Willick. C-terminal analogues of parathyroid hormone: effect of C-terminus function on helical structure, stability, and bioactivity. Biochemistry. 2006 Sep 19;45(37):11113-21

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16964972

View Full Text