Correlation Engine 2.0
Clear Search sequence regions


The glutamate transporters GltP(Ec) from Escherichia coli and GltP(Ph) from Pyrococcus horikoshii were overexpressed in E. coli and purified to homogeneity with a yield of 1-2 mg/L of culture. Single-particle analysis and electron microscopy indicate that GltP(Ph) is a trimer in detergent solution. Electron microscopy of negatively stained GltP(Ph) two-dimensional crystals shows that the transporter is a trimer also in the membrane. Gel filtration of GltP(Ec) indicates a reversible equilibrium of two oligomeric states in detergent solution that we identified as a trimer and hexamer by blue-native gel electrophoresis and cross-linking. The purified transporters were fully active upon reconstitution into liposomes, as demonstrated by the uptake of radioactively labeled L-aspartate or L-glutamate. L-aspartate/L-glutamate transport of GltP(Ec) involves the cotransport of protons and depends only on pH, whereas GltP(Ph) catalyzes L-glutamate transport with a cotransport of H+ or Na+. L-glutamate induces a fast transient current in GltP(Ph) proteoliposomes coupled to a solid supported membrane (SSM). We show that the electric signal depends on the concentration of Na+ or H+ outside the proteoliposomes and that GltP(Ph) does not require K+ inside the proteoliposomes. In addition, the electrical currents are inhibited by TBOA and HIP-B. The half-saturation concentration for activation of GltP(Ph) glutamate transport (K0.5(glut)) is 194 microM.

Citation

Stefan Raunser, Matthias Appel, Constanta Ganea, Ulrike Geldmacher-Kaufer, Klaus Fendler, Werner Kühlbrandt. Structure and function of prokaryotic glutamate transporters from Escherichia coli and Pyrococcus horikoshii. Biochemistry. 2006 Oct 24;45(42):12796-805

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 17042498

View Full Text