Correlation Engine 2.0
Clear Search sequence regions


During myogenesis in Drosophila embryos, a prominent adhesive structure is formed between precursor cells and fusion-competent myoblasts (fcms). Here, we show that Duf/Kirre and its interaction partners Rols7 (found in founder myoblasts and growing myotubes) and Sns (found in fcms) are organized in a ring-structure at the contact points of fcms with precursor cells, while cytoskeletal components like F-actin and Titin are centered in this ring in both cell types. The cytoplasmic protein Blow colocalizes with the actin plugs in fcms after cell adhesion. Furthermore, the requirement of additional as yet unidentified components was demonstrated by using mammalian C2C12 myoblasts. In this study, we propose that the fusion-restricted myogenic-adhesive structure (FuRMAS) is pivotal in linking cell adhesion as well as local F-actin assembly and dynamics to downstream events that ultimately lead to plasma membrane fusion. Moreover, we suggest that the FuRMAS may restrict the area of membrane breakdown.

Citation

Dörthe Andrea Kesper, Christiana Stute, Detlev Buttgereit, Nina Kreisköther, Smitha Vishnu, Karl-Friedrich Fischbach, Renate Renkawitz-Pohl. Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Developmental dynamics : an official publication of the American Association of Anatomists. 2007 Feb;236(2):404-15

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 17146786

View Full Text