Correlation Engine 2.0
Clear Search sequence regions


Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential regulators in rhythmic activity, membrane excitability and synaptic transmission. There are four subtypes in mammals (HCN1-4); HCN4 has the slowest activation kinetics and HCN1 the fastest. Although voltage gating originates with the voltage-dependent motion of the S4 segment, the different activation kinetics between HCN1 and HCN4 are generated mainly by S1 and the S1-S2 loop. In this study, we investigate the structural basis of the ability of S1 to affect activation kinetics by replacing each individual S1 residue in HCN1 with a tryptophan (Trp) residue, a Trp perturbation scan. Robust currents were generated in 11 out of 19 Trp mutants. Hyperpolarization-activated currents were not detected in four mutants, and two other mutants generated only small currents. Presence or absence of current reflected the predicted alpha-helical structure of the S1 transmembrane segment. Tryptophan replacements of residues responsible for the different kinetics between HCN1 and HCN4 made the activation kinetics slower than the wild-type HCN1. Tryptophan mutations introduced in the middle of S1 (L139W and V143W) prevented normal channel closure. Furthermore, a negatively charged residue at position 139 (L139D) induced a positive voltage shift of activation by 125 mV. Thus, L139 and V143 probably face a mobile part of the S4 voltage sensor and may interact with it. These results suggest that the secondary structure of S1 is alpha-helical and profoundly affects the motion of the voltage sensor.

Citation

Takahiro M Ishii, Noriyuki Nakashima, Harunori Ohmori. Tryptophan-scanning mutagenesis in the S1 domain of mammalian HCN channel reveals residues critical for voltage-gated activation. The Journal of physiology. 2007 Mar 1;579(Pt 2):291-301

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 17185333

View Free Full Text