Correlation Engine 2.0
Clear Search sequence regions


Inhaled anesthetics bind specifically to a wide variety of proteins in the brain. This set of proteins must include those that contribute to the physiological and behavioral phenotypes of anesthesia and the related side effects. To identify the anesthetic-binding targets and functional pathways associated with these targets in human brain, halothane photolabeling and two-dimensional (2D) gel electrophoresis were used. Both membrane and soluble proteins from human temporal cortex were prepared. More than 300 membrane and 400 soluble protein spots were detected on the stained blots, of which 23 membrane and 34 soluble proteins were labeled by halothane and identified by mass spectroscopy. Their functional classification reveals five groups, including carbohydrate metabolism, protein folding, oxidative phosphorylation, nucleoside triphosphatase, and dimer/kinase activity with different correlative stringency. When network analysis of the interaction between these protein molecules is used, the weighted interaction accentuates the cellular protein components important in cell growth and proliferation, cell cycle and cell death, and cell-cell signaling and interactions, although no pathway was specific. This study provides evidence for multiple anesthetic binding targets and suggests potential pathways involved in their actions.

Citation

Jonathan Z Pan, Jin Xi, John W Tobias, Maryellen F Eckenhoff, Roderic G Eckenhoff. Halothane binding proteome in human brain cortex. Journal of proteome research. 2007 Feb;6(2):582-92

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 17269715

View Full Text