Correlation Engine 2.0
Clear Search sequence regions


The HCV nonstructural protein (NS)3/4A serine protease is not only involved in viral polyprotein processing but also efficiently blocks the retinoic-acid-inducible gen I and Toll-like receptor 3 signaling pathways and contributes to virus persistence by enabling HCV to escape the interferon antiviral response. Therefore, the NS3/4A protease has emerged as an ideal target for the control of the disease and the development of new anti-HCV agents. Here, we analyzed, at a high resolution (approximately 100 individual clones), the HCV NS3 protease gene quasispecies from three infected individuals. Nucleotide heterogeneity of 49%, 84%, and 91% were identified, respectively, which created a dense net that linked different parts of the viral population. Minority variants having mutations involved in the acquisition of resistance to current NS3/4A protease inhibitors (PIs) were also found. A vast diversity of different catalytic efficiencies could be distinguished. Importantly, 67% of the analyzed enzymes displayed a detectable protease activity. Moreover, 35% of the minority individual variants showed similar or better catalytic efficiency than the master (most abundant) enzyme. Nevertheless, and in contrast to minority variants, master enzymes always displayed a high catalytic efficiency when different viral polyprotein cleavage sites were tested. Finally, genetic and catalytic efficiency differences were observed when the 3 quasispecies were compared, suggesting that different selective forces were acting in different infected individuals. The rugged HCV protease quasispecies landscape should be able to react to environmental changes that may threaten its survival.

Citation

Sandra Franco, Mariona Parera, Ester Aparicio, Bonaventura Clotet, Miguel Angel Martinez. Genetic and catalytic efficiency structure of an HCV protease quasispecies. Hepatology (Baltimore, Md.). 2007 Apr;45(4):899-910

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 17393500

View Full Text