Correlation Engine 2.0
Clear Search sequence regions

The Sto12a protein, from the thermoacidophilic archaeon Sulfolobus tokodaii, has been identified as a small putative DNA-binding protein. Most of the proteins with a high level of amino acid sequence homology to this protein are derived from members of the Sulfolobaceae family, including a transcriptional regulator. We determined the crystal structure of Sto12a at 2.05 A resolution by multiple-wavelength anomalous dispersion phasing from the selenomethionine-containing protein crystal. This is the first structure of a member of this family of DNA-binding proteins. The Sto12a protein forms a homodimer, and the structure is composed of an N-terminal alpha-helix, a winged-helix-turn-helix domain, and a C-terminal alpha-helix that forms an interchain antiparallel coiled coil. The two winged-helix domains are located at both ends of the coiled coil, with putative DNA-recognition helices separated by approximately 34 A. A structural homology search indicated that the winged-helix domain shared a high level of homology with those found in B-DNA- or Z-DNA-binding proteins from various species, including archaea, bacteria, and human, despite a low level of sequence similarity. The unique structural features of the Sto12a protein include intrachain and interchain disulfide bonds, which stabilize the chain and homodimer structures. There are three cysteine residues: Cys15 and Cys16 in the N-terminal alpha-helix, and Cys100 in the C-terminal alpha-helix. Cys15 is involved in an interchain disulfide bridge with the other Cys15, and Cys16 forms an intrachain disulfide bridge with Cys100. This is a novel fold among winged-helix DNA-binding proteins. Possible DNA-binding interactions of the Sto12a protein are discussed based on the crystal structure of Sto12a and comparisons to other winged-helix DNA-binding proteins.


Akeo Shinkai, Shun-Ichi Sekine, Akiko Urushibata, Takaho Terada, Mikako Shirouzu, Shigeyuki Yokoyama. The putative DNA-binding protein Sto12a from the thermoacidophilic archaeon Sulfolobus tokodaii contains intrachain and interchain disulfide bonds. Journal of molecular biology. 2007 Oct 5;372(5):1293-304

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 17720190

View Full Text