Correlation Engine 2.0
Clear Search sequence regions


Ornithine aminotransferase (OAT) is a crucial enzyme in the synthesis of citrulline and arginine from glutamine/glutamate and proline by enterocytes of the small intestine. However, a role for OAT in intestinal polyamine synthesis and cell growth is not known. All-transretinoic acid (RA), an active metabolite of vitamin A, regulates the activity of several metabolic enzymes related to OAT, including ornithine decarboxylase and arginase, which may influence the function of OAT through effects on substrate (ornithine) availability. The objective of the present study was to test the hypothesis that RA regulates OAT mRNA expression and enzymatic activity in intestinal epithelial cells. Caco-2 cells were cultured for 12-72 h in the presence of 0, 0.01 and 1 microM RA and then used for measurements of OAT mRNA levels and enzyme activity as well as ornithine and polyamines. Treatment with RA induced increases in OAT gene expression and enzymatic activity, which resulted in decreased intracellular concentrations of ornithine and polyamines (putrescine, spermidine and spermine) in a dose-dependent manner. These changes occurred concomitantly with a decrease in the total number of cells, and the increase in OAT activity was due to increased OAT mRNA expression. In cells treated with 1 microM RA, addition of 10 microM putrescine to culture medium restored both cellular levels of polyamines and cell numbers to the values for the control group (without addition of RA). We conclude that exposure of Caco-2 cells to RA induces OAT expression for increasing ornithine catabolism. This leads to a reduced availability of intracellular ornithine for polyamine synthesis, thereby decreasing cell proliferation. These novel findings indicate a functional role for OAT in regulating intestinal polyamine synthesis and growth.

Citation

Christopher M Dekaney, Guoyao Wu, Yu-Long Yin, Laurie A Jaeger. Regulation of ornithine aminotransferase gene expression and activity by all-transretinoic acid in Caco-2 intestinal epithelial cells. The Journal of nutritional biochemistry. 2008 Oct;19(10):674-81

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 18280134

View Full Text