Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The cyclohexenone ring A of tetracyclines exhibits unique structural features not observed among other aromatic polyketides. These substitutions include the C2 primary amide, C4 dimethylamine, and the C12a tertiary alcohol. Here we report the identification and reconstitution of the minimum set of enzymes required for the biosynthesis of anhydrotetracycline (ATC, 5), the first intermediate in the tetracycline biosynthetic pathway that contains the fully functionalized ring A. Using a combination of in vivo and in vitro approaches, we confirmed OxyL, OxyQ, and OxyT to be the only enzymes required to convert 6-methylpretetramid 1 into 5. OxyL is a NADPH-dependent dioxygenase that introduces two oxygen atoms into 1 to yield the unstable intermediate 4-keto-ATC 2. The aminotransferase OxyQ catalyzes the reductive amination of C4-keto of 2, yielding 4-amino-ATC 3. Furthermore, the N, N-dimethyltransferase OxyT catalyzes the formation of 5 from 3 in a (S)-adenosylmethionine (SAM)-dependent manner. Finally, a "non-natural" anhydrotetracycline derivative was generated, demonstrating that our heterologous host/vector pair can be a useful platform toward the engineered biosynthesis of tetracycline analogues.


Wenjun Zhang, Kenji Watanabe, Xiaolu Cai, Michael E Jung, Yi Tang, Jixun Zhan. Identifying the minimal enzymes required for anhydrotetracycline biosynthesis. Journal of the American Chemical Society. 2008 May 14;130(19):6068-9

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 18422316

View Full Text