Correlation Engine 2.0
Clear Search sequence regions


The compatibility of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials of solid propellants was studied by using the pressure DSC method where, cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), 1,4-dinitropiperazine (DNP), 1.25/1-NC/NG mixture, lead 3-nitro-1,2,4-triazol-5-onate (NTO-Pb), aluminum powder (Al, particle size=13.6microm) and N-nitrodihydroxyethylaminedinitrate (DINA) were used as energetic components and polyethylene glycol (PEG), polyoxytetramethylene-co-oxyethylene (PET), addition product of hexamethylene diisocyanate and water (N-100), 2-nitrodianiline (2-NDPA), 1,3-dimethyl-1,3-diphenyl urea (C2), carbon black (C.B.), aluminum oxide (Al2O3), cupric 2,4-dihydroxy-benzoate (beta-Cu), cupric adipate (AD-Cu) and lead phthalate (phi-Pb) were used as inert materials. It was concluded that the binary systems of TNAD with NTO-Pb, RDX, PET and Al powder are compatible, and systems of TNAD with DINA and HMX are slightly sensitive, and with 2-NDPA, phi-Pb, beta-Cu, AD-Cu and Al2O3 are sensitive, and with PEG, N-100, C2 and C.B. are incompatible. The impact and friction sensitivity data of the TNAD and TNAD in combination with the other energetic materials under present study was also obtained, and there was no consequential affiliation between sensitivity and compatibility.

Citation

Qi-Long Yan, Li Xiao-Jiang, Zhang La-Ying, Li Ji-Zhen, Li Hong-Li, Liu Zi-Ru. Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials. Journal of hazardous materials. 2008 Dec 30;160(2-3):529-34

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 18434010

View Full Text