Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) dysregulation has been identified in several human tumors and in patients with a variety of neurodegenerative diseases. However, the function of Ape1/Ref-1 is unclear. We show here that Ape1/Ref-1 increases the expression of glial cell-derived neurotropic factor (GDNF) receptor alpha1 (GFRalpha1), a key receptor for GDNF. Expression of Ape1/Ref-1 led to an increase in the GDNF responsiveness in human fibroblast. Ape1/Ref-1 induced GFRalpha1 transcription through enhanced binding of NF-kappaB complexes to the GFRalpha1 promoter. GFRalpha1 levels correlate proportionally with Ape1/Ref-1 in cancer cells. The knockdown of endogenous Ape1/Ref-1 in pancreatic cancer cells markedly suppressed GFRalpha1 expression and invasion in response to GNDF, while overexpression of GFRalpha1 restored invasion. In neuronal cells, the Ape1/Ref-1-mediated increase in GDNF responsiveness not only stimulated neurite outgrowth but also protected the cells from beta-amyloid peptide and oxidative stress. Our results show that Ape1/Ref-1 is a novel physiological regulator of GDNF responsiveness, and they also suggest that Ape1/Ref-1-induced GFRalpha1 expression may play important roles in pancreatic cancer progression and neuronal cell survival.

Citation

Mi-Hwa Kim, Hong-Beum Kim, Samudra Acharya, Hong-Moon Sohn, Jae Yeoul Jun, In-Youb Chang, Ho Jin You. Ape1/Ref-1 induces glial cell-derived neurotropic factor (GDNF) responsiveness by upregulating GDNF receptor alpha1 expression. Molecular and cellular biology. 2009 Apr;29(8):2264-77

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 19188437

View Free Full Text