Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Smallpox, caused by the Variola major virus, is considered to be one of the most lethal of all potential biological weapons and has far-reaching consequences. Real-time polymerase chain reaction (PCR) assays are available as a reliable diagnostic tool to detect members of the genus Orthopoxvirus. In addition real-time PCR assays specific for the variola virus have been developed that distinguish it from other orthopoxviruses. However, a positive identification of variola spp. does not classify the virus as the one that causes smallpox (V. major) or as the variant (Variola minor) that causes a much less severe form of the disease. This study reports the development of a real-time PCR minor groove binder (MGB)-Eclipse probe assay utilizing a sequence within the variola B9R/B10R gene complex that reliably differentiates V. major from V. minor by specific probe melting temperatures (T(m)s) and genotyping analysis. The MGB-Eclipse probe assay is an important step beyond the standard TaqMan-MGB assay and we feel this is a significant addition to our current variola species identification algorithm with TaqMan-MGB assays that target the B9R and B10R genes. The probe T(m)s for V. major and V. minor were 62.71 (+/-0.05) and 53.97 (+/-0.44) degrees C, respectively (P=<0.001). We also used the identical sequence to develop a TaqMan((R))-MGB assay that specifically detected V. minor but not V. major variants by qualitative analysis.


Bonnie M Loveless, Eric M Mucker, Christopher Hartmann, Philip D Craw, John Huggins, David A Kulesh. Differentiation of Variola major and Variola minor variants by MGB-Eclipse probe melt curves and genotyping analysis. Molecular and cellular probes. 2009 Jun-Aug;23(3-4):166-70

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 19345728

View Full Text