Correlation Engine 2.0
Clear Search sequence regions


The genetic analysis of nontumorigenic radiation hybrids generated by transfer of chromosome 3 fragments into the tumorigenic OV-90 ovarian cancer cell line identified the 3p12.3-pcen region as a candidate tumor suppressor gene (TSG) locus. In the present study, polymorphic microsatellite repeat analysis of the hybrids further defined the 3p12.3-pcen interval to a 16.1 Mb common region containing 12 known or hypothetical genes: 3ptel-ROBO2-ROBO1-GBE1-CADM2-VGLL3-CHMP2B-POU1F1-HTR1F-CGGBP1-ZNF654-C3orf38-EPHA3-3pcen. Seven of these genes, ROBO1, GBE1, VGLL3, CHMP2B, CGGBP1, ZNF654, and C3orf38, exhibited gene expression in the hybrids, placing them as top TSG candidates for further analysis. The expression of all but one (VGLL3) of these genes was also detected in the parental OV-90 cell line. Mutations were not identified in a comparative sequence analysis of the predicted protein coding regions of these candidates in OV-90 and donor normal chromosome 3 contig. However, the nondeleterious sequence variants identified in the transcribed regions distinguished parent of origin alleles for ROBO1, VGLL3, CHMP2B, and CGGBP1 and cDNA sequencing of the hybrids revealed biallelic expression of these genes. Interestingly, underexpression of VGLL3 and ZNF654 were observed in malignant ovarian tumor samples as compared with primary cultures of normal ovarian surface epithelial cells or benign ovarian tumors, and this occurred regardless of allelic content of 3p12.3-pcen. The results taken together suggest that dysregulation of VGLL3 and/or ZNF654 expression may have affected pathways important in ovarian tumorigenesis which was offset by the transfer of chromosome 3 fragments in OV-90, a cell line hemizygous for 3p.

Citation

Neal A L Cody, Zhen Shen, Jean-Sebastien Ripeau, Diane M Provencher, Anne-Marie Mes-Masson, Mario Chevrette, Patricia N Tonin. Characterization of the 3p12.3-pcen region associated with tumor suppression in a novel ovarian cancer cell line model genetically modified by chromosome 3 fragment transfer. Molecular carcinogenesis. 2009 Dec;48(12):1077-92

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 19347865

View Full Text