Correlation Engine 2.0
Clear Search sequence regions


  • actin (9)
  • actin cytoskeleton (1)
  • actin filament (3)
  • ADF cofilin (1)
  • arp2 3 complex (1)
  • brain (1)
  • Cofilin 1 (2)
  • dendrites (1)
  • Dia2 (1)
  • filopodia (3)
  • formin (1)
  • mDia2 (1)
  • mice (1)
  • morphogenesis (2)
  • NADPH (2)
  • neurons (1)
  • pseudopodia (1)
  • Rif1 (1)
  • rna (2)
  • small gtpase (1)
  • Sizes of these terms reflect their relevance to your search.

    Dendritic spines are small protrusions along dendrites where the postsynaptic components of most excitatory synapses reside in the mature brain. Morphological changes in these actin-rich structures are associated with learning and memory formation. Despite the pivotal role of the actin cytoskeleton in spine morphogenesis, little is known about the mechanisms regulating actin filament polymerization and depolymerization in dendritic spines. We show that the filopodia-like precursors of dendritic spines elongate through actin polymerization at both the filopodia tip and root. The small GTPase Rif and its effector mDia2 formin play a central role in regulating actin dynamics during filopodia elongation. Actin filament nucleation through the Arp2/3 complex subsequently promotes spine head expansion, and ADF/cofilin-induced actin filament disassembly is required to maintain proper spine length and morphology. Finally, we show that perturbation of these key steps in actin dynamics results in altered synaptic transmission.

    Citation

    Pirta Hotulainen, Olaya Llano, Sergei Smirnov, Kimmo Tanhuanpää, Jan Faix, Claudio Rivera, Pekka Lappalainen. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. The Journal of cell biology. 2009 Apr 20;185(2):323-39

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 19380880

    View Full Text