Correlation Engine 2.0
Clear Search sequence regions


Lysosomal carboxypeptidases play important roles in catabolism of proteins and peptides and in posttranslational processing of other lysosomal enzymes. The major lysosomal serine carboxypeptidase A (cathepsin A [CathA]), also known as protective protein, activates and stabilizes two other lysosomal enzymes, beta-galactosidase and neuraminidase/sialidase 1. Genetic deficiency of CathA (galactosialidosis) causes the lysosomal storage of sialylated glycoconjugates and leads to a multiorgan pathology. The galactosialidosis patients also show arterial hypertension and cardiomyopathy, conditions not predicted from the lysosomal storage of glycoconjugates. This review summarizes the experimental data suggesting that both cardiovascular pathologies associate with persisted vasoconstrictions and impaired formation of the elastic fibers triggered by the deficiency of CathA. We also discuss the homologous serine carboxypeptidases, Scpep1 and vitellogenic-like carboxypeptidase, that are secreted from endothelial cells and could potentially affect the cardiovascular system.

Citation

Alexey V Pshezhetsky, Aleksander Hinek. Serine carboxypeptidases in regulation of vasoconstriction and elastogenesis. Trends in cardiovascular medicine. 2009 Jan;19(1):11-7

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 19467448

View Full Text