Correlation Engine 2.0
Clear Search sequence regions


We developed a potentiometric aflatoxin M(1)-immunosensor which utilizes 3-(4-hydroxyphenyl)propionic acid (p-HPPA) as electron donating compound for horseradish peroxidase (HRP; EC 1.11.1.7). The assay system consists of a polypyrrole-surface-working electrode coated with a polyclonal anti-M(1) antibody (pAb-AFM(1)), a Ag/AgCl reference electrode and a HRP-aflatoxin B(1) conjugate (HRP-AFB(1) conjugate). To optimize the potentiometric measuring system p-HPPA as well as related compounds serving as electron donating compounds were compared. Also the influence of different buffer systems, varying pH and substrate concentrations on signal intensity was investigated. Our results suggest that reaction conditions that favor the formation of Pummerer's type ketones lead to an increase in signal intensity rather than formation of fluorescent dye. Comparison with commercial ready-to-use HRP electron donating compounds such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), o-phenylenediamine (OPD) or 3,3',5,5'-tetramethylbenzidine (TMB) showed that only 34%, 77% and 49% of the signal intensity of p-HPPA were reached, respectively. The optimized assay had a detection limit of 40 pg mL(-1) and allowed detection of 500 pg mL(-1) (FDA action limit) aflatoxin M(1) (AFM(1)) in pasteurized milk and UHT-milk containing 0.3-3.8% fat within 10 min without any sample treatment. The working range was between 250 and 2000 pg mL(-1) AFM(1). Copyright 2009 Elsevier B.V. All rights reserved.

Citation

Steffen Rameil, Peter Schubert, Peter Grundmann, Richard Dietrich, Erwin Märtlbauer. Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M1-immunosensor. Analytica chimica acta. 2010 Feb 19;661(1):122-7

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20113725

View Full Text