Correlation Engine 2.0
Clear Search sequence regions


The idea that GPCRs (G-protein-coupled receptors) may exist as homo- or hetero-oligomers, although still controversial, is now widely accepted. Nevertheless, the functional roles of oligomerization are still unclear and gaining greater insight into the mechanisms underlying the dynamics of GPCR assembly and, in particular, assessing the effect of ligands on this process seems important. We chose to focus our present study on the effect of MT7 (muscarinic toxin 7), a highly selective allosteric peptide ligand, on the oligomerization state of the hM1 (human M1 muscarinic acetylcholine receptor subtype). We analysed the hM1 oligomerization state in membrane preparations or in live cells and observed the effect of MT7 via four complementary techniques: native-PAGE electrophoresis analysed by both Western blotting and autoradiography on solubilized membrane preparations of CHO-M1 cells (Chinese-hamster ovary cells expressing muscarinic M1 receptors); FRET (fluorescence resonance energy transfer) experiments on cells expressing differently tagged M1 receptors using either an acceptor photobleaching approach or a novel fluorescence emission anisotropy technique; and, finally, by BRET (bioluminescence resonance energy transfer) assays. Our results reveal that MT7 seems to protect the M1 receptor from the dissociating effect of the detergent and induces an increase in the FRET and BRET signals, highlighting its ability to affect the dimeric form of the receptor. Our results suggest that MT7 binds to a dimeric form of hM1 receptor, favouring the stability of this receptor state at the cellular level, probably by inducing some conformational rearrangements of the pre-existing muscarinic receptor homodimers.

Citation

Catherine Marquer, Carole Fruchart-Gaillard, Gilles Mourier, Olivier Grandjean, Emmanuelle Girard, Marc le Maire, Spencer Brown, Denis Servent. Influence of MT7 toxin on the oligomerization state of the M1 muscarinic receptor. Biology of the cell / under the auspices of the European Cell Biology Organization. 2010 Jul;102(7):409-20

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20170475

View Full Text