Correlation Engine 2.0
Clear Search sequence regions


The microstructural orientation of vascular wall constituents is of interest to scientists and clinicians because alterations in their native states are associated with various cardiovascular diseases. In the arterial media, the orientation of these constituents is often described as circumferential. However, it has been noted that, just below the endothelial surface, the vascular wall constituents are oriented axially. To further study this reported change in orientation, and to resolve previous observations (which were made under conditions of no load), we used nonlinear optical microscopy to examine the orientation of collagen and elastin fibers in the inner medial region of bovine common carotid arteries. Images were obtained from this part of the arterial wall under varying degrees of mechanical strain: 0%, 10% axial, 10% circumferential, and 10% biaxial. We observed that close to the endothelium these components are aligned in the axial direction but abruptly change to a circumferential alignment at a depth of approximately 20 mum from the endothelial surface. The application of mechanical strain resulted in a significantly greater degree of fiber alignment, both collagen and elastin, in the strain direction, regardless of their initial unloaded orientation. Furthermore, variations in strain conditions resulted in an increase or a decrease in the overall degree of fiber alignment in the subendothelial layer depending on the direction of the applied strain. This high-resolution investigation adds more detail to existing descriptions of complex structure-function relationships in vascular tissue, which is essential for a better understanding of the pathophysiological processes resulting from injury, disease progression, and interventional therapies.

Citation

Lucas H Timmins, Qiaofeng Wu, Alvin T Yeh, James E Moore, Stephen E Greenwald. Structural inhomogeneity and fiber orientation in the inner arterial media. American journal of physiology. Heart and circulatory physiology. 2010 May;298(5):H1537-45

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20173046

View Full Text