Correlation Engine 2.0
Clear Search sequence regions


Advanced glycosylation end products (AGE) and its receptor (RAGE) axis is involved in the regulation of lipid homeostasis and is critical in the pathogenesis of diabetic atherosclerosis. We investigated the protective role of resveratrol against the AGE-induced impairment on macrophage lipid homeostasis. In THP-1-derived macrophages, RAGE was dose-dependently induced by AGE and played a key role in the AGE-induced cholesterol accumulation. Resveratrol markedly reduced RAGE expression via peroxisome proliferator-activated receptor (PPAR) gamma but not PPARalpha or AMP-activated protein kinase. Importantly, pretreatment with resveratrol significantly ameliorated AGE-induced up-regulation of scavenger receptor-A (SR-A) and down-regulation of ATP-binding cassette (ABC) A1 and ABCG1 and thus effectively prevented the cholesterol accumulation in macrophages as shown by cellular cholesterol analysis and oil red O staining. Moreover, blockade of PPARgamma abolished all these effects of resveratrol. Collectively, our results indicate that resveratrol prevents the impairment of AGE on macrophage lipid homeostasis partially by suppressing RAGE via PPARgamma activation, which might provide new insight into the protective role of resveratrol against diabetic atherosclerosis.

Citation

Yihua Zhang, Zhidan Luo, Liqun Ma, Qiang Xu, Qihong Yang, Liangyi Si. Resveratrol prevents the impairment of advanced glycosylation end products (AGE) on macrophage lipid homeostasis by suppressing the receptor for AGE via peroxisome proliferator-activated receptor gamma activation. International journal of molecular medicine. 2010 May;25(5):729-34

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20372816

View Full Text