College of Material Science and Engineering, Jilin University, Changchun, 130025 Jilin, People's Republic of China.
Journal of materials science. Materials in medicine 2010 JulSilica-calcium phosphate nanocomposite (SCPC) is a bioactive ceramic characterized by superior bone regenerative capacity and resorbability when compared to traditional bioactive ceramics. The aim of the present study is to evaluate the effect of processing parameters on the microstructure and mechanical properties of SCPC. Cylinders were prepared by pressing the ceramic powder at 200, 300 or 400 MPa and sintering at 900, 1000 or 1100 degrees C for 3 h, respectively. XRD results indicate that the crystalline structure of the material is made of beta-NaCaPO(4) and alpha-cristobalite solid solutions. The increase in sintering temperature results in an increase in the grain size and the formation of a melting phase that coats the grains. TEM analyses reveal that the melting phase is amorphous and rich in silicon. The mechanical properties of SCPC cylinders are dependent on the content of the melting phase and the microstructure of the material. The ranges of compressive strength and modulus of elasticity of the SCPC are 62-204 MPa and 6-14 GPa, respectively, which are comparable to those of cortical bone. The results suggest that the interaction between crystalline and amorphous phases modulated the mechanical behavior of SCPC. It is possible to engineer the mechanical properties of SCPC by controlling the processing parameters to synthesize various fixation devices for orthopedic and cranio-maxillofacial applications.
Xueran Liu, Ahmed Ei-Ghannam. Effect of processing parameters on the microstructure and mechanical behavior of silica-calcium phosphate nanocomposite. Journal of materials science. Materials in medicine. 2010 Jul;21(7):2087-94
PMID: 20379765
View Full Text