Correlation Engine 2.0
Clear Search sequence regions


Paracrine regulation is emerging as a discrete control mechanism in the endocrine system. In hypogonadal men, stimulation of GH secretion by testosterone requires prior aromatization to estradiol, a paracrine effect unmasked by central estrogen receptor blockade with tamoxifen. In hypogonadal women, estrogen replacement via a physiological non-oral route fails to enhance GH secretion, indicating an absence of an endocrine effect. The aim was to investigate whether local estrogens produced from aromatization regulate GH secretion. We conducted an open-label, two-phase, crossover study. We compared the effects on GH secretion of tamoxifen with estradiol valerate in postmenopausal women. Ten women were treated with tamoxifen (10 and 20 mg/d) and estradiol valerate (2 mg/d) via oral route for 2 wk each, with a washout period of at least 6 wk. We measured the GH response to arginine and circulating levels of IGF-I and SHBG, markers of hepatic estrogen effect. The GH response to arginine was reduced by 10- and 20-mg tamoxifen in a dose-dependent manner and potentiated significantly (P<0.05) by estradiol valerate. Mean IGF-I concentration was reduced significantly with high-dose tamoxifen (P<0.01) and estradiol valerate treatment (P<0.05), whereas mean SHBG levels rose with both (P<0.01). Blunted GH response to stimulation occurring in the face of reduced IGF-I feedback inhibition with tamoxifen indicates that GH secretion was suppressed by estrogen receptor antagonism. Because circulating estradiol was unaffected, these data indicate a significant role of local estrogen in the central control of GH secretion. We conclude that aromatase mediates the paracrine control of GH secretion in women.

Citation

Vita Birzniece, Akira Sata, Surya Sutanto, Ken K Y Ho. Paracrine regulation of growth hormone secretion by estrogen in women. The Journal of clinical endocrinology and metabolism. 2010 Aug;95(8):3771-6

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20444909

View Full Text