Correlation Engine 2.0
Clear Search sequence regions


Oral mannose therapy is used to treat congenital disorders of glycosylation caused by a deficiency in phosphomannose isomerase. The segmental distribution and ontogenic regulation of D-mannose transport, phosphomannose isomerase, and phosphomannose mutase is investigated in the small intestine of fetuses, newborn, suckling, 1-month-old, and adult rats. The small intestine transports D-mannose by both Na(+)-dependent and Na(+)-independent transport mechanisms. The activities of both systems normalized to intestinal weight peak at birth and thereafter they decreased. In all the ages tested, the activity of the Na(+)-independent mechanism was higher than that of the Na(+)/mannose transport system. At birth, the Na(+)-independent D-mannose transport in the ileum was significantly higher than that in jejunum. Phosphomannose isomerase activity and mRNA levels increased at 1 month, and the values in the ileum were lower than in jejunum. Phosphomannose mutase activity in jejunum increased during the early stages of life, and it decreased at 1 month old, as does the amount of mannose incorporated into glycoproteins, whereas in the ileum, they were not affected by age. The phosphomannose isomerase/phosphomannose mutase activity ratio decreased at birth and during the suckling period, and increased at 1 month old. In conclusion, intestinal D-mannose transport activity and metabolism were affected by ontogeny and intestinal segment.

Citation

Mecedes Cano, Anunciación A Ilundain. Ontogeny of D-mannose transport and metabolism in rat small intestine. The Journal of membrane biology. 2010 Jun;235(2):101-8

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20523973

View Full Text