Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

A new radiation-induced mutation in the mouse, tabby-25H (Ta25H), has proved to be a deletion which spans both the tabby and testicular feminization (Tfm) loci on the X chromosome. The Ta phenotype closely resembles that of the original TaFa mutation in both the heterozygous and hemizygous conditions but Ta25H/Y animals additionally show the Tfm/Y phenotype, being externally female but possessing abdominally located testes. There is a shortage of both Ta25H/+ and Ta25H/Y classes relative to their normal sibs among the progeny of Ta25H/+ females at weaning age and this was indicated to be due to prenatal or neonatal losses. Exencephaly was observed in some members of both classes prior to birth. Both Ta25H classes tend to be runted at weaning but, remarkably, Ta25H/+ females often show a range of abnormalities not evident in Ta25H/Y animals. When probes for the Zfx, Ccg-1, Phk, and DXPas19 loci, which lie close to Ta, were hybridised to DNAs from Ta25H hemizygotes, the profiles of the X-linked bands were similar to those of control DNAs, suggesting these loci lie outside the deletion. However, a clear absence of an X-linked band was found with human androgen receptor probes, indicating that the Tfm locus is indeed missing. The deletion, therefore, extends a minimum of 1.5 cM and, with its proximal and distal boundaries partially defined, it could be as large as 4 cM. As Ta25H/+ females show the striped X-inactivation coat pattern, the putative X-inactivation centre, Xce, which lies close to Ta, cannot be located within the region deleted. The greasy (Gs) locus similarly appears to lie outside the deletion.

Citation

B M Cattanach, C Rasberry, E P Evans, L Dandolo, M C Simmler, P Avner. Genetic and molecular evidence of an X-chromosome deletion spanning the tabby (Ta) and testicular feminization (Tfm) loci in the mouse. Cytogenetics and cell genetics. 1991;56(3-4):137-43

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 2055107

View Full Text