Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Treatment with 6-dimethylaminopurine (6-DMAP) or demecolcine (DE) for several (at least 2) hours after artificial activation is known to improve in vitro development of porcine embryos. However, several reports have also shown that treatments with these chemicals induce apoptosis. The aim of this study was to find out whether short-term treatment with 6-DMAP and DE combined with electrical or thimerosal/dithiothreitol (Thi/DTT) activation had a beneficial effect on development of parthenogenetically activated porcine oocytes. We additionally treated embryos with 6-DMAP (2 mM) and/or DE (0.4 microg/ml) for a short time (40 min) after an electrical pulse (EP) or Thi/DTT. As a result, short-term treatment with 6-DMAP and DE successfully induced development of electrically or Thi/DTT-activated porcine parthenogenetic embryos with no significant difference in cleavage rate, blastocyst formation rate and total cell number compared with long-term treatment. To find optimal activation protocol, cleavage rate, blastocyst formation rate and total cell number were compared between EP and Thi/DTT treatments. Thi/DTT + 6-DMAP + DE showed significantly higher blastocyst formation rate (36.1 ± 3.5%) and total cell number (46.9 ± 1.0) than other groups (EP + 6-DMAP + DE, EP + Thi/DTT + 6-DMAP + DE: 23.3 ± 3.0%, 42.2 ± 1.1 and 17.2 ± 2.7%, 36.7 ± 1.5, respectively). In conclusion, this study demonstrates that short-term treatment with 6-DMAP and DE is as effective as the standard long-term treatment and Thi/DTT + 6-DMAP + DE exerts a synergistic effect.

Citation

Sol Ji Park, Ok Jae Koo, Dae Kee Kwon, Ma Ninia Limas Gomez, Jung Taek Kang, Mohammad Atikuzzaman, Su Jin Kim, Goo Jang, Byeong Chun Lee. Short-term treatment with 6-DMAP and demecolcine improves developmental competence of electrically or Thi/DTT-activated porcine parthenogenetic embryos. Zygote (Cambridge, England). 2011 Feb;19(1):1-8

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20569509

View Full Text