Correlation Engine 2.0
Clear Search sequence regions


Fertilization in flowering plants involves two sperm cells and two female gametes, the egg cell and the central cell, progenitors of the embryo and the endosperm, respectively. The mechanisms triggering zygotic development are unknown and whether both parental genomes are required for zygotic development is unclear. In Arabidopsis, previous studies reported that loss-of-function mutations in CYCLIN DEPENDENT KINASE A1 (CDKA;1) impedes cell cycle progression in the pollen leading to the production of a single sperm cell. Here, we report that a significant proportion of single cdka;1 pollen delivers two sperm cells, leading to a new assessment of the cdka;1 phenotype. We performed fertilization of wild-type ovules with cdka;1 mutant sperm cells and monitored in vivo the fusion of the male and female nuclei using fluorescent markers. When a single cdka;1 sperm was delivered, either female gamete could be fertilized leading to similar proportions of seeds containing either a single endosperm or a single embryo. When two cdka;1 sperm cells were released, they fused to each female gamete. Embryogenesis was initiated but the fusion between the nuclei of the sperm cell and the central cell failed. The failure of karyogamy in the central cell prevented incorporation of the paternal genome, impaired endosperm development and caused seed abortion. Our results thus support that the paternal genome plays an essential role during early seed development. However, sperm entry was sufficient to trigger central cell mitotic division, suggesting the existence of signaling events associated with sperm cell fusion with female gametes.

Citation

Sze Jet Aw, Yuki Hamamura, Zhong Chen, Arp Schnittger, Frédéric Berger. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development (Cambridge, England). 2010 Aug;137(16):2683-90

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20610483

View Full Text