Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In contrast to the majority of cyanobacteria, the unicellular marine cyanobacterium Prochlorococcus marinus MED4 uses an intrinsic divinyl-chlorophyll-dependent light-harvesting system for photosynthesis. Despite the absence of phycobilisomes, this high-light adapted strain possesses β-phycoerythrin (CpeB), an S-type lyase (CpeS), and enzymes for the biosynthesis of phycoerythrobilin (PEB) and phycocyanobilin. Of all linear tetrapyrroles synthesized by Prochlorococcus including their 3Z- and 3E-isomers, CpeS binds both isomers of PEB and its biosynthetic precursor 15,16-dihydrobiliverdin (DHBV). However, dimerization of CpeS is independent of bilins, which are tightly bound in a complex at a ratio of 1:1. Although bilin binding by CpeS is fast, transfer to CpeB is rather slow. CpeS is able to attach 3E-PEB and 3Z-PEB to dimeric CpeB but not DHBV. CpeS transfer of 3Z-PEB exclusively yields correctly bound βCys(82)-PEB, whereas βCys(82)-DHBV is a side product of 3E-PEB transfer. Spontaneous 3E- and 3Z-PEB addition to CpeB is faulty, and products are in both cases βCys(82)-DHBV and likely a PEB bound at βCys(82) in a non-native configuration. Our data indicate that CpeS is specific for 3Z-PEB transfer to βCys(82) of phycoerythrin and essential for the correct configuration of the attachment product.

Citation

Jessica Wiethaus, Andrea W U Busch, Klaus Kock, Lars I Leichert, Christian Herrmann, Nicole Frankenberg-Dinkel. CpeS is a lyase specific for attachment of 3Z-PEB to Cys82 of {beta}-phycoerythrin from Prochlorococcus marinus MED4. The Journal of biological chemistry. 2010 Nov 26;285(48):37561-9

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20876568

View Full Text