Correlation Engine 2.0
Clear Search sequence regions


Ethionamide (ETH) needs to be activated by the mono-oxygenase EthA, which is regulated by EthR, in order to be active against Mycobacterium tuberculosis. The activated drug targets the enzyme InhA, which is involved in cell wall biosynthesis. Resistance to ETH has been reported to result from various mechanisms, including mutations altering EthA/EthR, InhA and its promoter, the NADH dehydrogenase encoded by ndh, and the MshA enzyme, involved in mycothiol biosynthesis. We searched for such mutations in 87 clinical isolates: 47 ETH-resistant (ETH(r)) isolates, 24 ETH-susceptible (ETH(s)) isolates, and 16 isolates susceptible to ETH but displaying an intermediate proportion of resistant cells (ETH(Sip); defined as ≥1% but <10% resistant cells). In 81% (38/47) of the ETH(r) isolates, we found mutations in ethA, ethR, or inhA or its promoter, which mostly corresponded to new alterations in ethA and ethR. The 9 ETH(r) isolates without a mutation in these three genes (9/47, 19%) had no mutation in ndh, and a single isolate had a mutation in mshA. Of the 16 ETH(Sip) isolates, 7 had a mutation in ethA, 8 had no detectable mutation, and 1 had a mutation in mshA. Finally, of the 24 ETH(s) isolates, 23 had no mutation in the studied genes and 1 displayed a yet unknown mutation in the inhA promoter. Globally, the mechanism of resistance to ETH remained unknown for 19% of the ETH(r) isolates, highlighting the complexity of the mechanisms of ETH resistance in M. tuberculosis.

Citation

F Brossier, N Veziris, C Truffot-Pernot, V Jarlier, W Sougakoff. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy. 2011 Jan;55(1):355-60

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 20974869

View Full Text