Correlation Engine 2.0
Clear Search sequence regions


The pyrrole polyether antibiotic calcimycin (A23187) is a rare ionophore that is specific for divalent cations. It is widely used as a biochemical and pharmacological tool because of its multiple, unique biological effects. Here we report on the cloning, sequencing, and mutational analysis of the 64-kb biosynthetic gene cluster from Streptomyces chartreusis NRRL 3882. Gene replacements confirmed the identity of the gene cluster, and in silico analysis of the DNA sequence revealed 27 potential genes, including 3 genes for the biosynthesis of the α-ketopyrrole moiety, 5 genes that encode modular type I polyketide synthases for the biosynthesis of the spiroketal ring, 4 genes for the biosynthesis of 3-hydroxyanthranilic acid, an N-methyltransferase tailoring gene, a resistance gene, a type II thioesterase gene, 3 regulatory genes, 4 genes with other functions, and 5 genes of unknown function. We propose a pathway for the biosynthesis of calcimycin and assign the genes to the biosynthesis steps. Our findings set the stage for producing much desired calcimycin derivatives using genetic modification instead of chemical synthesis.

Citation

Qiulin Wu, Jingdan Liang, Shuangjun Lin, Xiufen Zhou, Linquan Bai, Zixin Deng, Zhijun Wang. Characterization of the biosynthesis gene cluster for the pyrrole polyether antibiotic calcimycin (A23187) in Streptomyces chartreusis NRRL 3882. Antimicrobial agents and chemotherapy. 2011 Mar;55(3):974-82

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21173184

View Full Text