Correlation Engine 2.0
Clear Search sequence regions

Formyl peptide receptor 1 (FPR1) and FPR2/ALX are known to control neutrophil chemotaxis in response to various ligands. In this study, we investigated the inhibitory mechanism of compound 43 (Cpd43), an FPR1 and FPR2/ALX dual agonist, on human neutrophil chemotaxis. Precedent stimulation of human peripheral blood neutrophils with Cpd43 rendered the cells unresponsive in calcium mobilization induced by interleukin-8, C5a, or leukotriene B₄. In addition, neutrophils pretreated with Cpd43 lost their chemotactic responses against these chemoattractants, wherein the expressions of chemoattractant receptors CXCR1, CXCR2, C5a receptor, and leukotriene B₄ receptor 1 on the surface of neutrophils were all diminished significantly by treatment with Cpd43. By evaluating its pharmacological effect on 341 molecules, including receptors and enzymes, we also confirmed that Cpd43 has a highly specific affinity to FPR1 and FPR2/ALX and does not show binding affinity to the other chemoattractant receptors. These results indicate a previously unrecognized inhibitory mechanism of Cpd43 on neutrophil chemotaxis: the induction of cross-desensitization of multiple chemoattractant receptors in human neutrophils through its FPR1 and FPR2/ALX dual agonism.


Yoshitaka Sogawa, Takao Ohyama, Hiroaki Maeda, Kazuki Hirahara. Formyl peptide receptor 1 and 2 dual agonist inhibits human neutrophil chemotaxis by the induction of chemoattractant receptor cross-desensitization. Journal of pharmacological sciences. 2011;115(1):63-8

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 21173551

View Full Text