Correlation Engine 2.0
Clear Search sequence regions

Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis through the secretion of fibrillar collagens and the tissue inhibitors of metalloproteinase (TIMP)-1 and -2. TIMPs are believed to promote hepatic fibrosis by inhibiting both matrix degradation and apoptosis of HSC. In other cell types, there is evidence that TIMP-1 has effects on proliferation, however the role of TIMPs in the regulation of HSC proliferation remains unexplored. Therefore, we have used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. TIMP-1 and -2 siRNA were highly effective, producing peak target protein knockdown compared to negative control siRNA of 92% and 63%, respectively. Specific silencing of TIMP-1, using siRNA, significantly reduced HSC proliferation. TIMP-1 was localised in part to the HSC nucleus and TIMP-1 siRNA resulted in loss of both cytoplasmic and nuclear TIMP-1. Attenuated proliferation was associated with reduced Akt phosphorylation and was partially rescued by addition of recombinant TIMP-1. We have revealed a novel autocrine mitogenic effect of TIMP-1 on HSC, which may involve Akt-dependent and specific nuclear mechanisms of action. We suggest that TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. Moreover, these findings, together with our previous reports and the emerging data from in vivo studies of TIMP inhibition, provide strong evidence that TIMP-1 is mechanistically central to liver fibrosis and an important potential therapeutic target. Copyright © 2011 Elsevier Inc. All rights reserved.


Andrew J Fowell, Jane E Collins, Dale R Duncombe, Judith A Pickering, William M C Rosenberg, R Christopher Benyon. Silencing tissue inhibitors of metalloproteinases (TIMPs) with short interfering RNA reveals a role for TIMP-1 in hepatic stellate cell proliferation. Biochemical and biophysical research communications. 2011 Apr 8;407(2):277-82

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 21300026

View Full Text