Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

We investigated glucose tolerance and left ventricular contractile performance in 4 frequently used mouse strains (Swiss, C57BL/6J, DBA2, and BalbC) at 24 weeks. Glucose tolerance was tested by measuring blood glucose levels in time after intraperitoneal glucose injection (2 mg/g body weight). Left ventricular contractility was assessed by pressure-conductance analysis. Peak glucose levels and glucose area under the curve were higher (all P < .05) in C57BL/6J (418 ± 65 mg/dL and 813 ± 100 mg·h/dL) versus Swiss (237 ± 66 mg/dL and 470 ± 126 mg·h/dL), DBA2 (113 ± 20 mg/dL and 304 ± 49 mg·h/dL, P < .01), and BalbC mice (174 ± 55 mg/dL and 416 ± 70 mg·h/dL). Cardiac output was higher (all P < .05) in Swiss (14038 ± 4530 μL/min) versus C57BL/6J (10405 ± 2683 μL/min), DBA2 (10438 ± 3251 μL/min), and BalbC mice (8466 ± 3013 μL/min). Load-independent left ventricular contractility assessed as recruitable stroke work (PRSW) was comparable in all strains. In conclusion, glucose tolerance and load-dependent left ventricular performance parameters were different between 4 mice background strains, but PRSW was comparable.

Citation

Wouter Oosterlinck, Annelies Vanderper, Willem Flameng, Paul Herijgers. Glucose tolerance and left ventricular pressure-volume relationships in frequently used mouse strains. Journal of biomedicine & biotechnology. 2011;2011:281312

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21318112

View Full Text