Correlation Engine 2.0
Clear Search sequence regions


κ-Carrageenan is a novel pelletisation aid with high formulation robustness and quick disintegration leading to fast drug release unlike the matrix-like release from non-disintegrating microcrystalline cellulose pellets. Compression of pellets into tablets is cost effective. The feasibility of formulating multiparticulate tablets with coated κ-carrageenan pellets was investigated. Pellets containing a highly soluble drug in acid, namely bisacodyl and κ-carrageenan or MCC as pelletisation aid were prepared, enteric coated with a mixture of Kollicoat(®) MAE 30 DP and Eudragit(®) NE 30 D and compressed using silicified microcrystalline cellulose as embedding powder. The effect of coating level, type of pellet core, compression force and punch configurations on drug release were studied. A sufficient coating thickness for κ-carrageenan pellets was necessary to obtain multiparticulate tablets with adequate resistance in the acid stage regardless of the compression pressure used. While κ-carrageenan pellets and their tablets released over 80% of the drug during the neutral stage only about 20-24% was released from MCC pellets and their tablets. The type of punches used (oblong or round) did not significantly influence the drug release from the prepared tablets. Moreover, sufficient prolonged release properties were obtained with κ-carrageenan pellets containing theophylline as a model drug and coated with Kollicoat(®) SR 30 D using Kollicoat(®) IR as pore former. A lower coating level and higher amount of pore former were needed in case of theophylline pellets formulated with MCC as pelletisation aid. The sustained release properties of both coated pellet formulations were maintained after compression at different compression pressures. Copyright © 2011 Elsevier B.V. All rights reserved.

Citation

Dima Ghanam, Peter Kleinebudde. Suitability of κ-carrageenan pellets for the formulation of multiparticulate tablets with modified release. International journal of pharmaceutics. 2011 May 16;409(1-2):9-18

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21335073

View Full Text