Correlation Engine 2.0
Clear Search sequence regions


Studies in Xenopus laevis suggested that cell-extracellular matrix (ECM) interactions regulate the development of the left-right axis of asymmetry; however, the identities of ECM components and their receptors important for this process have remained unknown. We discovered that FN is required for the establishment of the asymmetric gene expression pattern in early mouse embryos by regulating morphogenesis of the node, while cellular fates of the nodal cells, canonical Wnt and Shh signaling within the node were not perturbed by the absence of FN. FN is also required for the expression of Lefty 1/2 and activation of SMADs 2 and 3 at the floor plate, while cell fate specification of the notochord and the floor plate, as well as signaling within and between these two embryonic organizing centers remained intact in FN-null mutants. Furthermore, our experiments indicate that a major cell surface receptor for FN, integrin α5β1, is also required for the development of the left-right asymmetry, and that this requirement is evolutionarily conserved in fish and mice. Taken together, our studies demonstrate the requisite role for a structural ECM protein and its integrin receptor in the development of the left-right axis of asymmetry in vertebrates. Copyright © 2011 Elsevier Inc. All rights reserved.

Citation

Maria V Pulina, Shuan-Yu Hou, Ashok Mittal, Dorthe Julich, Charlie A Whittaker, Scott A Holley, Richard O Hynes, Sophie Astrof. Essential roles of fibronectin in the development of the left-right embryonic body plan. Developmental biology. 2011 Jun 15;354(2):208-20

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21466802

View Full Text