Correlation Engine 2.0
Clear Search sequence regions

Intracellular chemical reactions generally constitute reaction-diffusion systems located inside nanostructured compartments like the cytosol, nucleus, endoplasmic reticulum, Golgi, and mitochondrion. Understanding the properties of such systems requires quantitative information about solute diffusion. Here we present a novel approach that allows determination of the solvent-dependent solute diffusion constant (D(solvent)) inside cell compartments with an experimentally quantifiable nanostructure. In essence, our method consists of the matching of synthetic fluorescence recovery after photobleaching (FRAP) curves, generated by a mathematical model with a realistic nanostructure, and experimental FRAP data. As a proof of principle, we assessed D(solvent) of a monomeric fluorescent protein (AcGFP1) and its tandem fusion (AcGFP1(2)) in the mitochondrial matrix of HEK293 cells. Our results demonstrate that diffusion of both proteins is substantially slowed by barriers in the mitochondrial matrix (cristae), suggesting that cells can control the dynamics of biochemical reactions in this compartment by modifying its nanostructure.


Cindy E J Dieteren, Stan C A M Gielen, Leo G J Nijtmans, Jan A M Smeitink, Herman G Swarts, Roland Brock, Peter H G M Willems, Werner J H Koopman. Solute diffusion is hindered in the mitochondrial matrix. Proceedings of the National Academy of Sciences of the United States of America. 2011 May 24;108(21):8657-62

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 21555543

View Full Text