Correlation Engine 2.0
Clear Search sequence regions


Many proteins with poor transduction efficiency were reported to be delivered to cells by fusion with protein transduction domains (PTDs). In this study, we investigated the effect of levosulpiride on the transduction of PEP-1 ribosomal protein S3 (PEP-1-rpS3), and examined its influence on the stimulation of the therapeutic properties of PEP-1-rpS3. PEP-1-rpS3 transduction into HaCaT human keratinocytes and mouse skin was stimulated by levosulpiride in a manner that did not directly affect the cell viability. Following 12-O-tetradecanoylphorbol- 13-acetate (TPA)-induced inflammation in mice, levosulpiride alone was ineffective in reducing TPA-induced edema and in inhibiting the elevated productions of inflammatory mediators and cytokines, such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1β, and tumor necrosis factor- α. Anti-inflammatory activity by PEP-1-rpS3 + levosulpiride was significantly more potent than by PEP-1-rpS3 alone. These results suggest that levosulpiride may be useful for enhancing the therapeutic effect of PEP-1-rpS3 against various inflammatory diseases. [BMB reports 2011; 44(5): 329-334].

Citation

Eun Hee Ahn, Dae Won Kim, Duk-Soo Kim, Su Jung Woo, Hye Ri Kim, Joon Kim, Soon Sung Lim, Tae-Cheon Kang, Dong Joon Kim, Ki Tae Suk, Jinseu Park, Qiuxiang Luo, Won Sik Eum, Hyun Sook Hwang, Soo Young Choi. Levosulpiride, (S)-(-)-5-Aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoxybenzamide, enhances the transduction efficiency of PEP-1-ribosomal protein S3 in vitro and in vivo. BMB reports. 2011 May;44(5):329-34

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21615988

View Full Text