Correlation Engine 2.0
Clear Search sequence regions


In this study neural (N)-cadherin, neural cell adhesion molecule (N-CAM) and L1 proteins and their antibody equivalents were covalently immobilized on a polyethylene-imine (PEI)-coated glass surface to form neuron-adhesive coatings. Impedance sensing and (supplementary) image analysis were used to monitor the effects of these CAMs. Immobilization of high concentrations of both N-cadherin protein and antibody led to good adhesion of neurons to the modified surface, better than surfaces treated with 30.0 and 100.0 µg ml(-1) N-CAM protein and antibody. L1 antibody and protein coating revealed no significant effect on neuronal cell-substrate adhesion. In a second series of combinatorial experiments, we used the same antibodies and proteins as medium-additives to inhibit cell-cell adhesion between neurons. Adhesion of neurons cultured on N-cadherin protein or antibody-modified surfaces was lowered by the addition of a soluble N-cadherin protein and antibody to the culturing medium, accelerating neuronal aggregation. The presence of a soluble N-CAM antibody or protein had no effect on the adhesion of neuronal cells on a N-cadherin protein-modified surface. On a N-cadherin antibody-coated surface, the addition of a soluble N-CAM protein led to cell death of neurons after 48 h, while a N-CAM antibody had no effect. In the presence of a soluble N-cadherin protein and antibody the aggregation of neurons was inhibited, both on N-CAM protein and N-CAM antibody-modified surfaces. Neurons cultured on immobilized antibodies were less affected by the addition of soluble CAM blockers than neurons cultured on immobilized proteins, indicating that antibody-protein bonds are more stable compared to protein-protein bonds.

Citation

R W F Wiertz, E Marani, W L C Rutten. Neural cell-cell and cell-substrate adhesion through N-cadherin, N-CAM and L1. Journal of neural engineering. 2011 Aug;8(4):046004

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21628769

View Full Text