Correlation Engine 2.0
Clear Search sequence regions


Several disorders of the human upper and lower urinary tract, such as urinary stone disease, lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) and detrusor overactivity, can be therapeutically addressed by influencing the function of the smooth musculature of the ureter, prostate or urinary bladder, respectively. In order to ensure a drug effect without significant adverse events, a certain degree of tissue selectivity is mandatory. The treatment of said conditions aims to focus on orally available drugs acting via intracellular signalling pathways. Specifically, the cyclic nucleotide monophosphate cyclic GMP represents an important mediator in the control of the outflow region (bladder, urethra). The use of phosphodiesterase (PDE) inhibitors, such as sildenafil, tadalafil, vardenafil, avanafil or udenafil, known to restrain the degradation of the second messenger cyclic GMP, offers great opportunities in the treatment of lower urinary tract dysfunction. PDE inhibitors are regarded as efficacious, have a rapid onset of action and favourable effect-to-side-effect ratio. The role of PDE5 inhibitors in the treatment of BPH/LUTS and the overactive bladder has already been addressed in randomized, double-blind, placebo-controlled trials, as well as preliminary open-label studies enrolling either several hundreds or only 20 patients. The purpose of this review is to focus on the potential use and clinical significance of PDE inhibitors in the treatment of storage and voiding dysfunctions of the lower urinary tract. The strategy of modulating the activity of PDE isoenzymes might represent a novel approach in patients with lower urinary tract dysfunction (LUTD). © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

Citation

Stefan Uckert, Matthias Oelke. Phosphodiesterase (PDE) inhibitors in the treatment of lower urinary tract dysfunction. British journal of clinical pharmacology. 2011 Aug;72(2):197-204

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21745238

View Full Text