Correlation Engine 2.0
Clear Search sequence regions


Poly(ADP-ribose) polymerase (PARP) is a critical DNA repair enzyme involved in DNA single-strand break repair via the base excision repair pathway. PARP inhibitors have been shown to sensitize tumors to DNA-damaging agents and to also selectively kill homologous recombination repair-defective cancers, such as those arising in BRCA1 and BRCA2 mutation carriers. Recent proof-of-concept clinical studies have demonstrated the safety and substantial antitumor activity of the PARP inhibitor, olaparib in BRCA1/2 mutation carriers, highlighting the wide therapeutic window that can be achieved with this synthetic lethal strategy. Likewise, the PARP inhibitor, BSI-201, in combination with carboplatin and gemcitabine have produced promising results in "triple-negative" breast cancers. There are also currently numerous other PARP inhibitors in clinical development. The potential broader therapeutic application of these approaches to a wide range of sporadic tumors harboring specific defects in the homologous recombination repair pathway has generated a great deal of excitement within the oncology community. This review discusses the rationale for targeting PARP and details the strategies and challenges involved in the clinical development of such inhibitors and their future potential applications in cancer medicine.

Citation

Shahneen K Sandhu, Timothy A Yap, Johann S de Bono. The emerging role of poly(ADP-Ribose) polymerase inhibitors in cancer treatment. Current drug targets. 2011 Dec;12(14):2034-44

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21777194

View Full Text