Correlation Engine 2.0
Clear Search sequence regions


Global understanding of the proteome is a major research topic. The comprehensive visualization of the distribution of proteins in vivo or the construction of in situ protein atlases may be a valuable strategy for proteomic researchers. Information about the distribution of various proteins under physiological and pathological conditions should be extremely valuable for the basic and clinical sciences. The mitogen-activated protein kinase (MAPK) cascade plays an essential role in intracellular signaling in organisms. This cascade also regulates biological processes involving development, differentiation, and proliferation. Phosphorylation and dephosphorylation are integral reactions in regulating the activity of MAPKs. Changes in the phosphorylation state of MAPKs are rapid and reversible; therefore, the localizations of physiologically phosphorylated MAPKs in vivo are difficult to accurately detect. Furthermore, phosphorylated MAPKs are likely to change phosphorylated states through commonly used experimental manipulations. In the present study, as a step toward the construction of in situ phosphoprotein atlases, we attempted to detect physiologically phosphorylated MAPKs in vivo in developing spinal cords of mice. We previously reported an improved immunohistochemical method for detecting unstable phosphorylated MAPKs. The distribution patterns of phosphorylated MAPKs in the spinal cords of embryonic mice from embryonic day 13 (E13) to E17 were observed with an improved immunohistochemical method. Phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phosphorylated c-Jun N-terminal kinase 1/2 (p-JNK1/2) were strongly observed in the marginal layer and the dorsal horn from E13 to E17. Our results suggest that p-ERK1/2 and p-JNK1/2 play critical roles in the developing spinal cord. Constructing phosphoprotein atlases will be possible in the future if this work is systematically developed on a larger scale than we presented here. Copyright © 2011 Elsevier Inc. All rights reserved.

Citation

Toshiya Teraishi, Kenji Miura. Detection of phosphorylated mitogen-activated protein kinase in the developing spinal cord of the mouse embryo. Biochemical and biophysical research communications. 2011 Sep 16;413(1):87-91

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21871441

View Full Text