Correlation Engine 2.0
Clear Search sequence regions

We fabricated a vertically and unidirectionally oriented metal coordinated α-helical peptide monolayer, Leu(2)Ala(Pyri)(Co(II))Leu(6)Ala(4-Pyri)(Co(II))Leu(6), by stepwise polymerization on a mixed self-assembled monolayer consisting of amino-alkanethiol, dialkyl disulfide, and ferrocenyl alkanethiol acted as a photoresponsive electron donor. Redox-active protein, nitrate reductase (NR), was fixed on the surface of the peptide monolayer. By contrast, we fixed NR on the mixed self-assembled monolayer directly. Upon photoirradiation, electron flow occurred from the excited ferrocenyl group on the substrate to the electron acceptor, NR, on the surface of the molecular layers. The activated NR on the molecular layers reduced the nitrate to nitrite. The amount of the bioelectrocatalytic product, nitrite, generated by the immobilized NR on the peptide monolayer was larger than that produced by the immobilized NR on the mixed self-assembled monolayer directly. That is to say, the NR on the peptide monolayer has been more activated rather than that on the peptide absent monolayer by photoirradiation. The effective activation of the NR on the peptide monolayer can be explained in terms of enhancement of the vectorial electron flow along the macro-dipole moment of the α-helical peptide that arranged unidirectionally. It suggested that the ordered metal coordinated α-helical peptide monolayer acted as an efficient electron mediator to achieve a communication between the electron donor and the redox-active moiety. Such a hybrid molecular system looks promising for novel nanodevices, such as nano-photoreactors. © 2011 American Chemical Society


Xinxin Wang, Kenji Nagata, Masahiro Higuchi. Functional regulation of an immobilized redox protein on an oriented metal coordinated peptide monolayer as an electron mediator. Langmuir : the ACS journal of surfaces and colloids. 2011 Oct 18;27(20):12569-74

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 21882826

View Full Text