Correlation Engine 2.0
Clear Search sequence regions


The channel structure of the Ku protein elegantly reveals the mechanistic basis of sequence-independent DNA-end binding, which is essential to genome integrity after exposure to ionizing radiation or in V(D)J recombination. However, contradicting evidence indicates that this protein is also involved in the regulation of gene expression and in other regulatory processes with intact chromosomes. This computational study predicts that a putative DNA binding domain of this protein, the SAP domain, can form DNA-bound complexes with relatively high affinities (ΔG ≈ -20 kcal mol(-1)). The binding modes are searched by low frequency vibration modes driven by the fully flexible docking method while binding affinities are calculated by the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. We find this well defined 5 kDa domain with a helix-extended loop-helix structure is suitable to form favorable electrostatic and hydrophobic interactions with either the major groove or the minor groove of DNA. The calculation also reveals the sequence specified binding preference which may relate to the observed pause sites when Ku translocates along DNA and the perplex binding of Ku with circular DNA.

Citation

Shaowen Hu, Janice M Pluth, Francis A Cucinotta. Putative binding modes of Ku70-SAP domain with double strand DNA: a molecular modeling study. Journal of molecular modeling. 2012 May;18(5):2163-74

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21947447

View Full Text