Correlation Engine 2.0
Clear Search sequence regions

Bioactive silica-calcium phosphate nanocomposite (SCPC) has been coated on Ti-6Al-4V implant employing an electrophoretic deposition (EPD) technique. The effects of composition and pH of the suspending medium on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however, the difference was not statistically significant. Discs of Ti-6Al-4V were passivated, coated with SCPC50 (200 nm-10 μm) and thermally treated at 600-800°C to produce a coating thickness in the range of 43.1 ± 5.7 to 30.1 ± 4.6 μm. After treatment at 600, 700, and 800°C, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 ± 3.6, 44.7 ± 8.7, and 47.2 ± 4.3 MPa, respectively. SEM-EDX analyses of SCPC50-coated Ti-6Al-4V preimmersed in PBS for 7 days showed the formation of a Ca-deficient hydroxyapatite surface layer. ICP-OES analyses of the immersing solution (n = 6) showed an increase in the ionic concentration of Si from 3.3 ± 0.9 to 5.0 ± 1.2 ppm between days 1 and 4; after which no significant change in the Si concentration was measured. Bone marrow mesenchymal stem cells attached to the SCPC50-coated implants expressed significantly higher (p < 0.05) alkaline phosphatase activity (82.4 ± 25.6 nmoles p-NP/mg protein/min) than that expressed by cells attached to HA-coated or uncoated implants. Results of the study suggest that bioactive SCPC50 can efficiently be coated on Ti-6Al-4V using EPD. The SCPC50 coating has the potential to enhance bone integration with the orthopedic implant. 2011 Wiley Periodicals, Inc.


Aniket, Ahmed El-Ghannam. Electrophoretic deposition of bioactive silica-calcium phosphate nanocomposite on Ti-6Al-4V orthopedic implant. Journal of biomedical materials research. Part B, Applied biomaterials. 2011 Nov;99(2):369-79

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 21948397

View Full Text