Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The purpose of this feasibility study was to evaluate two novel techniques facilitating bone cement repair of ossicular discontinuity between the incus and stapes. An isolated damage of the long incus process can be repaired using bone cement. However, bridging of a large gap between incus remnant and stapes head with bone cement is difficult, since viscous cement is not stable and the wet cement bridge may collapse. Ten fresh-frozen cadaveric human temporal bones were used. The long process of the incus was subtotally resected. A novel instrument and polylactide acid (PLA) scaffolds were applied to support ossicular reconstruction with bone cement. Stability of cement bridging was tested by checking for a round window reflex or motion of the stapes by palpating the malleus handle. Both the instrument as well as the PLA scaffolds were relatively easy to insert into the middle ear. However, bone cement adhered to the instrument irrespective of cement viscosity and contact time of the instrument with the ossicles. The bone cement plug had to be detached and sculptured. By contrast, PLA scaffolds could be used in a standardized manner and generated stable cement reconstructions. Curved PLA scaffolds were superior to straight ones. Initial results in cadaveric human temporal bones suggest that implantable PLA scaffolds might be suitable to support bone cement repair, even in very large defects of the long incus process.

Citation

Holger Kaftan, Achim Göpferich, Silke Kaftan, Werner Hosemann. Two different techniques to facilitate reconstruction of the long incus process with bone cement: a feasibility study in human cadaveric temporal bones. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery. 2012 May;269(5):1431-5

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21971717

View Full Text