Correlation Engine 2.0
Clear Search sequence regions


The inferior olive (IO) is a major component of the eyeblink conditioning neural network. The cerebellar learning hypothesis assumes that the IO supplies the cerebellum with a "teaching" unconditioned stimulus input required for the acquisition of the conditioned response (CR) and predicts that inactivating this input leads to the extinction of CRs. Previous tests of this prediction attempted to block the teaching input by blocking glutamatergic sensory inputs in the IO. These tests were inconclusive because blocking glutamate neurotransmission in the IO produces a nonspecific tonic malfunction of cerebellar circuits. The purpose of the present experiment was to examine whether the behavioral outcomes of blocking glutamate receptors in the IO could be counterbalanced by reducing GABA-mediated inhibition in the IO. We found that injecting the IO with the glutamate antagonist γ-d-glutamylglycine (DGG) abolished previously learned CRs, whereas injecting the GABA(A) receptor antagonist gabazine at the same site did not affect CR incidence but shortened CR latencies and produced tonic eyelid closure. To test whether the glutamate antagonist-induced behavioral deficit could be offset by elevating IO activity with GABA(A) antagonists, rabbits were first injected with DGG and then with gabazine in the same training session. While DGG abolished CRs, follow-up injections of gabazine accelerated their recovery. These findings suggest that the level of IO neuronal activity is critical for the performance of CRs, and that combined pharmacological approaches that maintain spontaneous activity at near normal levels hold tremendous potential for unveiling the role of IO-mediated signals in eyeblink conditioning.

Citation

Svitlana Zbarska, Vlastislav Bracha. Assessing the role of inferior olivary sensory signaling in the expression of conditioned eyeblinks using a combined glutamate/GABAA receptor antagonist protocol. Journal of neurophysiology. 2012 Jan;107(1):273-82

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 21975449

View Full Text