Correlation Engine 2.0
Clear Search sequence regions

Copper amine oxidases (CAOs) catalyse the oxidation of various aliphatic amines to the corresponding aldehydes, ammonia and hydrogen peroxide. Although CAOs from various organisms share a highly conserved active-site structure including a protein-derived cofactor, topa quinone (TPQ), their substrate specificities differ considerably. To obtain structural insights into the substrate specificity of a CAO from Arthrobacter globiformis (AGAO), we have determined the X-ray crystal structures of AGAO complexed with irreversible inhibitors that form covalent adducts with TPQ. Three hydrazine derivatives, benzylhydrazine (BHZ), 4-hydroxybenzylhydrazine (4-OH-BHZ) and phenylhydrazine (PHZ) formed predominantly a hydrazone adduct, which is structurally analogous to the substrate Schiff base of TPQ formed during the catalytic reaction. With BHZ and 4-OH-BHZ, but not with PHZ, the inhibitor aromatic ring is bound to a hydrophobic cavity near the active site in a well-defined conformation. Furthermore, the hydrogen atom on the hydrazone nitrogen is located closer to the catalytic base in the BHZ and 4-OH-BHZ adducts than in the PHZ adduct. These results correlate well with the reactivity of 2-phenylethylamine and tyramine as preferred substrates for AGAO and also explain why benzylamine is a poor substrate with markedly decreased rate constants for the steps of proton abstraction and the following hydrolysis.


Takeshi Murakawa, Hideyuki Hayashi, Masayasu Taki, Yukio Yamamoto, Yoshiaki Kawano, Katsuyuki Tanizawa, Toshihide Okajima. Structural insights into the substrate specificity of bacterial copper amine oxidase obtained by using irreversible inhibitors. Journal of biochemistry. 2012 Feb;151(2):167-78

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 21984603

View Full Text