Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Protein phosphorylation underpins major cellular processes including energy metabolism, signal transduction, excitation-contraction coupling, apoptosis, and cell survival mechanisms and is thus critical to the myocyte. Targeted approaches, whereby a handful of phosphoproteins are investigated, can suffer from a relatively narrow view of cellular phosphorylation. In contrast, recent technical advances have allowed for the comprehensive documentation of phosphorylation events in complex biological environments, providing a deeper view of the "phosphoproteome." A global, high-throughput characterization of the myocardial phosphoproteome, however, has not yet been achieved. Efficient analysis of phosphorylated proteins and their roles in a dynamic cellular environment requires high-resolution strategies that can identify, localize, and quantify many thousands of phosphorylation sites in a single experiment. Such an approach requires specific enrichment and purification techniques, developed to align with high-end instrumentation for analysis. Cutting-edge phosphoproteomics is no longer restricted to gel-based technology, instead focusing on affinity enrichment prior to liquid chromatography and mass spectrometry. We will describe the best current methods and how they can be applied, as well as the challenges associated with them. We also present current phosphoproteomic investigations in the myocyte and its subcompartments. Although the techniques and instrumentation required to achieve the goal of a myocardial phosphoprotein catalog in physiological and diseased states are highly specialized, the potential biological insight provided by such an approach makes phosphoproteomics an important new avenue of investigation for the cardiovascular researcher.

Citation

Alistair V G Edwards, Stuart J Cordwell, Melanie Y White. Phosphoproteomic profiling of the myocyte. Circulation. Cardiovascular genetics. 2011 Oct;4(5):575

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22010164

View Full Text