Correlation Engine 2.0
Clear Search sequence regions


Myotonic dystrophy (DM) is caused by a triplet repeat expansion in the non-coding region of either the DMPK (DM1) or CNBP (DM2) gene. Transcription of the expanded region causes accumulation of double-stranded RNA (dsRNA) in DM cells. We sought to determine how expression of triplet repeat RNA causes the varied phenotype typical of DM. Global transcription was measured in DM and non-DM cataract samples using Illumina Bead Arrays. DM samples were compared with non-DM samples and lists of differentially expressed genes (P≤ 0.05) were prepared. Gene set enrichment analysis and the Interferome database were used to search for significant patterns of gene expression in DM cells. Expression of individual genes was measured using quantitative real-time polymerase chain reaction. DMPK and CNBP expression was confirmed in native lens cells showing that a toxic RNA gain of function mechanism could exist in lens. A high proportion, 83% in DM1 and 75% in DM2, of the significantly disregulated genes were shared by both forms of the disease, suggesting a common mechanism. The upregulated genes in DM1 and DM2 were highly enriched in both interferon-regulated genes (IRGs) and genes associated with the response to dsRNA and the innate immune response. The characteristic fingerprint of IRGs and the signalling pathways identified in lens cells support a role for dsRNA activation of the innate immune response in the pathology of DM. This new evidence forms the basis for a novel hypothesis to explain the complex mechanism of DM.

Citation

Jeremy D Rhodes, Martin C Lott, Sarah L Russell, Vincent Moulton, Julie Sanderson, I Michael Wormstone, David C Broadway. Activation of the innate immune response and interferon signalling in myotonic dystrophy type 1 and type 2 cataracts. Human molecular genetics. 2012 Feb 15;21(4):852-62

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 22062891

View Full Text